Editor: Martin Fowler

ThoughtWorks

fowler@acm.org

Module Assembly

Martin Fowler

0740-7459/04/$20.00 © 2004 IEEE

hen people talk about modularity,

they usually focus on separating the

interface and implementation. The

whole of point of a module is that

it should hide a secret in its imple-

mentation that isn’t apparent from
the interface. A user can then take advantage of
what the module does without knowing all the
gory details of its implementation.

For example, say we have a program that
prints the names and addresses of people who
have a birthday this week. To get this informa-
tion, the program uses a separation
address-book module that stores the
names and addresses. By making the
address book a separate module, we
can hide the storage mechanism
from the birthday printer.

To take advantage of this, the
writer of the print module must
program only to the address book’s
interface without taking advantage
of its implementation. Mechanisms
that make only the interface visible
could enforce this, but even if the implementa-
tion is visible, it’s just as important to program
only to the interface.

Hiding the implementation accomplishes a
couple of things. First, it means that if P'm writ-
ing the birthday printer module, I don’t have to
worry my ugly little head about the details of
the storage mechanism. Second, I can change
the storage mechanism (perhaps switching from
a file to a database) without changing the birth-
day printer—that is, different implementations
of the interface can substitute for each other.

Substitutability is important, but it raises
another question: How do we select which im-

plementation to talk to? After all, despite the
fact that the birthday printer knows only about
the interface, it has to talk to an implementa-
tion. If several implementations are available,
it must talk to the correct one and let us easily
change implementations.

Assembly through linkage

One way to sort this out is through a link-
age mechanism. A simple C program might
handle this by dividing the task into three files.
AddressBook.h would be a header file that
defines the address book interface. Address-
Bookl.c would be an implementation (and
there could be others), and BirthdayPrinter.c
would be the birthday printer program. To com-
pile BirthdayPrinter, I just include Address-
Book.h. To get a fully running program, I
would link it to AddressBook1 when I link.

Such a scheme performs some separation,
but it means I must choose my address book
implementation at link time. I can defer this
decision, using dynamic link mechanisms that
defer the decision of which address book im-
plementation to use until runtime. If I were do-
ing this in Windows, I might package Birth-
dayPrinter into an exe file and put an address
book implementation into a dll. The main pro-
gram could then load the dll to get the imple-
mentation. Different computers can use differ-
ent address book implementations by installing
the correct dll for their environment.

Assembly through linkage works to a point,
but it’s somewhat limited because my physical
packaging depends on my module structure. I
must package alternative implementations into
separate physical packages, and I also must
juggle around with linkage to get the right

Published by the IEEE Computer Society |EEE SOFTWARE 65

Service locator

Assembler

| getAddressBook

initAddressBook (AddressBook)

Service locator Birthday printer|

T
startup 1

create

Address book
implementation

- 1
initAddressBook

Assembler

Birthday «interface»
printer Address book
Address hook

(a) implementation

(b)

Address book

print

!

: getAddress

getAddressBook

Figure 1. (a) UML class and (b) sequence diagrams for a service locator. With a service locator, an assembler loads
implementations into the locator at startup and then clients call the locator to obtain suitable implementations.

implementations in place. Once you go
beyond a simple program, such jug-
gling becomes messy.

A more sophisticated approach lets
me package multiple executables into a
single physical package, and then I can
choose which ones to use through a
separate assembler module. The assem-
bler typically runs at application
startup and chooses which module im-
plementations to use.

Because the whole point of this mod-
ule assembly is to let people vary their
choice of modules with each deploy-
ment, the common approach is to have
a configuration file that lets a deployer
indicate which implementations should
be used. You then have a single module
assembler that reads the configuration
file and prepares the assembly to suit.
These configuration files are commonly
done as text files. The current fashion
these days is to have them as XML files.
XML is good at handling hierarchical
data, so it’s often a good choice.

But another way that’s often over-
looked is to write the assembly descrip-
tion using a programming language.
Most programming languages, espe-
cially scripting languages, can be more
readable than XML. More importantly,
a programming language can take an ac-
tive role, probing the environment and
making choices, similar to how modern
hardware installers work.

66 IEEE SOFTWARE

People often object to using a pro-
gramming language because they want
to avoid compilation or think that non-
programmers should be able to per-
form assembly description. But neither
view holds much water.

Compilation is an issue in some en-
vironments but not all. In some cases
you can compile the assembler sepa-
rately and use dynamic link assembly
to bind the assembler into the main
program. If such a separate compila-
tion isn’t an option, you can consider a
scripting language. Many development
environments let you combine scripting
languages with an application in an-
other language—and scripting lan-
guages can make very readable and
powerful assemblers.

Although nonprogrammers can make
some simple assembly choices, most of
the issues in a complicated assembly must
be done by technical people who should-
n’t be scared by a programming language.
I've seen complex configuration files that
are pretty much a programming language
themselves, in which case you might as
well use a full language.

I'm not saying that you should
never use simple configuration files—
after all, if your configuration is sim-
ple, then you don’t need a program-
ming language. However, a complex
configuration file that has a bad smell
might imply deeper problems with the
application’s configurability.

But the important point about as-

www.computer.org/software

sembly descriptions is not whether they
are written in some nonprogramming
environment—it’s that they are defined
separately from module usage.

Applications include a separate area
for module assembly that decides which
implementations to use. This assembler is
packaged separate from the application
and its components so that we can easily
change it with each deployment and so
that changes to the module assembly do
not change the core application.

There are a couple of common styles
for how modules find the appropriate
implementation. One is the Service Loca-
tor, in which one module essentially takes
responsibility for being the clearing-
house for finding module implementa-
tions (see Figure 1). The assembler’s job
is to plug the right implementations into
the locator, and, once completed, any
code that needs a variable module can
ask the locator for an implementation.

Another approach is what I call de-
pendency injection. With dependency
injection, each module has fields for
every other module implementation on
which it depends (see Figure 2). It then
declares its dependencies in some well-
known way—using, for example, con-
structor arguments, setting methods, or
an injection interface. The assembler
then loads implementations into those
fields during module startup. (I have a

Birthday printer

setAddressBook (AddressBook)

Assembler

(a)

Assembler Birthday printer

«interface» startup : :
"™ Add book

| ress boo new Address book i

| implementation |

! 1

setAddressBook :

. I

Address hook 1 1

Implementation i |

(b) i i

Figure 2. (a) UML class and (b) sequence diagramas for dependency injection. With a dependency injector, the
assembler puts implementations directly in properties of the client classes.

longer article on these strategies at http:/
martinfowler.com/articles/injection.

html).

Internal assembly

So far Ive addressed this issue from
the perspective of coarse-grained assem-
bly of components, typically where an
application combines components from
different teams or building systems that
need different modules in different de-
ployments. But the principle of separat-
ing assembly from usage applies even in
small-scale situations; indeed, it’s one of
the essential (and oft missed) attributes
of object-oriented development.

Consider a stereotypical example of
inheritance and polymorphism (see
Figure 3). The reason this works well is
that Order is connected to the correct
Customer subsclass once at the begin-
ning. However, all the logic that varies
with the Customer type is then cor-
rectly selected by polymorphism when
it delegates to the customer. This is the
same principle of separate modules
that I talked about earlier but at a
much finer level of granularity. You
can do this comfortably in an OO lan-
guage because inheritance and poly-
morphism provide a very straightfor-
ward mechanism for substitutability.

This is even more apparent in a dy-
namically typed language. In a static-
typed language, you can only substitute
for a defined interface (or superclass)
using inheritance. With a dynamically
typed language, you look at the client
to see what operations the client uses
and can substitute any object that im-

plements that set of operations. As
soon as you connect to the substitute
class, you are making a single configu-
ration decision that’s separate from the
uses of that class.

One of OO’ strengths—indeed,
probably the biggest strength—is that it
encourages these modular principles
right through the language. Although in-
heritance and polymorphism aren’t per-
fect for every case, they do handle many
cases in a handy way. The pity is that al-
though OO languages are becoming
more mainstream, they are usually used
in a way that doesn’t support this kind of
polymorphic assembly. I suspect that al-
though OO languages are quite main-
stream, it will still be a while before OO
programming is widely understood.

When you’re using substitutable
modules at this fine-grained level, it isn’t
always as important to separate the
configuration and use as widely. It’s
quite common to see code such as

class Company ..
private List movies =
new ArrayList()

In this case, the using class itself
chooses the implementation, so there
isn’t a separate assembler in play. Often
this more minimal separation is fine.
However, notice that the field type is set
by the interface, not by the implemen-
tation. The principle that you should
program to interfaces still holds. Gener-
ally, you should always use the most
abstract interface or class possible in
type declarations.

Order Customer
Regular Priority
customer customer

Figure 3. Instances of order are
connected to Customer subclasses,
but an instance of order doesn’t know
which subclass it’s connected to.

ow to modularize a program is one

of the most general and important

issues in software design. Ap-
proaches such as object orientation,
aspect orientation, components, and
services are all different twists to mod-
ularization. Whatever route you take,
separating the interface from the imple-
mentation and separating configuration
from use are two vital principles in a
good modularization scheme. @

Acknowledgments

My thanks to my colleagues Bill Caputo,
Paul Hammant, Dave Pattinson, Jack Bolles,
and Mike Roberts for comments on drafts of
this column.

Martin Fowler is the chief scientist for ThoughtWorks,
a systems delivery and consulting company. Contact him at
fowler@acm.org.

March/April 2004 1EEE SOFTWARE 67

